Soft Linear Logic and Polynomial Complexity Classes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Soft Linear Logic and Polynomial Complexity Classes

We describe some results inspired to Lafont’s Soft Linear Logic (SLL) which is a subsystem of second-order linear logic with restricted rules for exponentials, correct and complete for polynomial time computations. SLL is the basis for the design of type assignment systems for lambda-calculus, characterizing the complexity classes PTIME, PSPACE and NPTIME. PTIME is characterized by a type assig...

متن کامل

Linear Logic and Sub-polynomial Classes of Complexity. (Logique linéaire et classes de complexité sous-polynomiales)

M. Patrick Baillot C.N.R.S., E.N.S. Lyon (Rapporteur) M. Arnaud Durand Université Denis Diderot Paris 7 M. Ugo Dal Lago I.N.R.I.A., Università degli Studi di Bologna (Rapporteur) Mme. Claudia Faggian C.N.R.S., Université Paris Diderot Paris 7 M. Stefano Guerrini Institut Galilée Université Paris :3 (Directeur) M. Jean-Yves Marion Lo.R.I.A., Université de Lorraine M. Paul-André Melliès C.N.R.S.,...

متن کامل

Soft linear logic and polynomial time

We present a subsystem of second order Linear Logic with restricted rules for exponentials so that proofs correspond to polynomial time algorithms, and vice-versa.

متن کامل

Soft Linear Logic and the Polynomial Hierarchy

In this paper we argue that Lafont’s system of Soft Linear Logic [3] is expressive enough to characterize any level of the Polynomial Hierarchy. This characterization is obtained using the existing additive connectives and does not require the introduction of new rules to SLL.

متن کامل

Complexity Classes and Polynomial - time Reductions

The first hard problem we will examine is what is known as Satisfiability or SAT. As input, we are given a set of n boolean variables X = {x1, x2, . . . , xn} (i.e., each variable can be set to either true or false). We are then given a boolean formula over these variables of the following form (noting that this is just a specific example where X = {x1, x2, x3, x4}): (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Notes in Theoretical Computer Science

سال: 2008

ISSN: 1571-0661

DOI: 10.1016/j.entcs.2008.03.066